

0040-4039(94)00865-5

First Total Synthesis of BE-12406 A

Takamitsu Hosoya, Eiji Takashiro, Takaski Matsumoto, and Keisuke Suzuki*

Department of Chemistry. Keio University, Hiyoshi. Kohoku-ku, Yokohama 223, Japan

Abstract: A concise total synthesis of BE-12406 A (3a) was achieved. The key step was the selective O-glycosylation of naphthol 4 with L-rhamnopyranosyl fluoride 5, employing Cp₂HfCl₂-AgClO₄ in
fluorobenzene at –20 °C in the presence of a hindered base 9, affording O-glycoside 8 in good yield.

Gilvocarcin **V (1) and ravidomycin (2) represent a ciass of aryt** C-glycoside antitumor antibiotics (Figure I).* Their structures include two characteristic substituents on a benzonaphthopyranone skeleton, i.e.. the Cglycoside at C(4) and the vinyl group at C(8). The latter **group** is reportedly essential to the biological activities.2 In connection with the total synthesis of 1.3 we were interested **in the structures of** BE-12406 A and **B** (3a and 3b) which were recently isolated from the culture broth of Streptomyces rutgersensis.⁴ These new antibiotics are structurally similar to **1 and 2, but are distinct in** that the sugar is attached as an Oglycoside rather than a C-glycoside. Also intriguing is that they show potent antitumor activities in v_1v_0 despite that the $C(8)$ substituent is not a vinyl group.

In this report, we wish to describe the first total synthesis of BE-12406 A **(3a)** based on the assembly of three readily available components, naphthol 4,⁵ L-rhamnopyranosyl fluoride 5,⁶ and benzoic acid 6⁷ (Figure 2). We chose a strategy to connect the sugar at the stage of naphthol 4 followed by construction of the aromatic moiety. We previously reported an effective method for rapid O -glycosylation of phenols by utilizing the combination of Cp₂HfCl₂-AgClO₄ as the activator of glycosyl fluoride.⁸ Along these lines, **coupling of naphthol4** and glycosyl fluoride 5 was attempted, which turned out to be extremely difficult.

The initial attempt at **the O-glycosylation of naphthol4 with glycosyl fluoride 5** was done by using Cp₂HfCl₂-AgClO₄ (CH₂Cl₂, -78 °C, 10 min),⁸ which rapidly provided a single product. However, the product was not the desired O glycoside 8 but the C-glycoside 7 α (70% yield).^{9,10} It is worth noting that the C-glycoside was solely the α -anomer, which completely anomerized to the β anomer when the reaction was warmed up to $0^{\circ}C$ (67% yield).^{9,10}

We initially surmised that C-glycoside 7 is produced via the " $O \rightarrow C$ -glycoside rearrangement", that is, the in situ-conversion of the kinetically formed O-glycoside $8¹¹$ However, following observations suggested that the C-glycoside 7 forms directly by the Friedel-Crafts reaction,¹² not by a two-stage process stated above. The tic monitoring of the reaction showed no indication of the intermediacy of 8. Low temperature quenching (-94 °C, 10 min) afforded C-glycoside 7 α (21%), the remaining naphthol 4 (74%), and none of the 0-glycoside 8. Use of the donor solvents was also ineffective: **CHjCN** totally retarded the reaction, while Et₂O led to the formation of a complex mixture. Various further attempts proved fruitless, e.g., other Lewis acid promoters, such as $SnCl₂-AgClO₄,^{13a} TMSOTf, ^{13b}$ or $BF₃•OEt₂, ^{13c}$ uniformly gave C-glycoside 7.

We reasoned that the reacting OH group in 4 has a poor reactivity towards O -glycosylation due to the hydrogen-bonding to the peri-oxygen, and thus, the naphthol instead undergoes a direct aromatic substitution at the most reactive $C(3)$ -position (see below). With a hope to weaken the hydrogen bond, thereby increasing the nucleophilicity of the hydroxyl oxygen, we attempted the reaction in the presence of a base.

a) Molar ratio: 4 / 5 / Cp2HfClz / AgClO4 I9 = I. 1 / I .O / **I.5 / 3.0 / 2.5. b) Isolated** yield based on 5. c) In all runs only α -anomer of O-glycoside was obtained.

Most of the bases tested, such as tetramethylguanidine 14 and 2.6-lutidine, totally retarded the reaction, whereas 2.6-di-tert-butyl-4-methylpyridine (9)¹⁵ nicely worked for this purpose. Thus, the reaction in the presence of 9 (2.5 equiv) gave the long sought O-glycoside 8^9 for the first time, although the major product was still 7α (Table 1, run 1). After considerable experimentation to improve the yield of 8, we found that the

choice of the solvent is important_ Use of an aromatic solvent tends to suppress the formation of C-glycoside 7. For example, toluene provided 8 as the major product although the total yield was low presumably due to the poor solubility of 4 (run 2). Use of a mixed solvent of toluene-CH₂Cl₂, the latter used for dissolving 4, **slightly improved the the yield of 8 (run 3), and we eventually found that halogenated aromatic solvents** (chlorobenzene and fluorobenzene) lead to acceptable yield of 8 (runs 4, 5).

Once O-glycoside 8 was in hand, completion of the synthesis was rather straightforward (Scheme 1). Saponification of acetate 8 followed by esterification with carboxylic acid $6⁷$ using water-soluble carbodiimide (EDCl)¹⁶ afforded ester 11⁹ in excellent yield. Construction of the tetracycle was nicely achieved via Pd catalysis.⁵ Thus, heating of 11 with a catalytic amount of (Ph₃P)₂PdCl₂ in the presence of **sodium pivalate and Hiinig base in dimethylacetamide provided the tetracycle 129 in 58% yield together with 32% recovery of 11. This reaction is a triflate version of** the **Martin's ingenious approach5 to benzonaphthopyranone skeleton (cf. the. original approach makes use of aryl iodide), which offers two merits: I) the ready accessibility of 6 (5 steps from vanillin)7 and 2) the higher reactivity to allow the reaction at** lower temperature (80 °C; cf. 120–130 °C for iodide).^{3,11e} Finally, the four benzyl protecting groups of 12 **were removed by hydrogenolysis to give BE-12406 A (3a) in 80% yield after recrystallization from MeOH** $\rm (mp 238-244 °C (dec); [α]²²D -89° (c 0.24, DMSO) [lit.⁴ mp 238-243 °C (dec); [α]²⁵D -89.3° (c 1.01, 1.01).$ **DMSO)¹⁷}}.⁹ All the data of synthetic 3a** ⁽¹H- and ¹³C-NMR, IR, MS, UV, and tle mobility in several **solvent systems) were in full accordance with those of the naturzd product by direct comparison.**

^{*a*}Key: (a) 0.25 N NaOH aq / MeOH-1,4-dioxane, 0 °C, 5 min (96%); (b) 6. EDCI (= 1-Ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride), DMAP / Et₂O, room temperature, 10 h (quant.); (c) 32 mol% (Ph₃P)2PdCl₂, 'BuCOONa, 'Pr₂NEt / DMA, 80 °C, 6 h (58%); (d) H₂, 10% Pd-C / MeOH-**THF. room temperature, I9 h (80%).**

ln summary, the first total synthesis of BE-12406 A (3a) was achieved in a convergent and concise manner (5 steps, 28% overall yield from 5). Further improvement of the glycosylation step and the synthesis of other derivatives are now in progress.

Acknowledgments: We are grateful to Dr. Hajime Morishima, Banyu Pharmaceutical Co., for an authentic **sample of 3a.**

References and Notes

I For reviews on aryl C-glycosides, see: (a) Hacksell, U.; Daves, G. D., Jr. *Prog. Med. Chem.* **1985**, 22, **I**-65. (b) Suzuki, K.; Matsumoto, T. In *Recent Progress in the Chemical Synthesis of Antibiotics and* *Related Microbial Products; Lukacs, G., Ed.; Springer: Berlin, 1993; Vol. 2, pp 353-403.*

- 2 McGee, L. R.; Misra, R. J. *Am. Chem. Soc.* **1990**, 112, 2386–2389 and references cited therein.
- 3 Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. *J. Am. Chem. Soc.* 1994, 116, 1004-1015.
- 4 *(a) Kojiri, K.; Arakawa, H.; Satoh, F.; Kawamura, K.; Okura, A.; Suda, H.; Okanishi, M. J. Antibiot. 1991,* 44, 1054-1060. (b) Nakajima, S.; Kojiri, K.; Suda, H.; Okanishi, M. *Ibid.* **1991**, 44, 1061-1064.
- 5 Deshpande. P. P.; Martin, 0. R. *Tetrahedron L&t.* 1990. SI, 6313-63 16.
- 6 Fluoride 5 was prepared from 2,3,4-tri-O-benzyl-L-rhamnopyranose (Fréchet, J. M. J.; Baer, H. H. *Carbohydr. Res.* 1975, 42, 369-372.) by the Noyori procedure (68% pyr*(HF)_x/CH₂Cl₂, -20 °C, 2 h, 85%. **a/p** >9SJ5). Hayashi. M.; Hashimoto, S.; Noyori. R. Chem. Lett. 1984. 1747-1750. See also: Kamiya, S.; Esaki, S.; Ito, R. *Agric. Boil. Chem.* 1986, 50, 1321-1322.
- 7 Benzoic acid 6 was prepared from the known bromophenol 13 (Ueda, S. Yakugaku Zasshi 1962, 82, 714-7 18: *Chem. Abstr.* 1963.58, 34 I9g.).

(a) CO, 3 mol% (Ph₄P)₂PdCl₂, 6 mol% 1,1'-bis(diphenylphosphino)ferrocene, MeOH. "Bu₁N / DMF, 100 °C, 9 h (63%); (b) **Tf,O, DMAP I pyridine-CHzCI,, 0 @C to room temperature,** 1 **h 6 (98%):** (c) conc. HCl / 1.4-dioxane, reflux, 60 h (72%).

- 8 Matsumoto, T.; Katsuki, M.; Suzuki, K. Chem. Lett. 1989, 437-440.
- 9 Afi compounds were fully characterized by tH-, I3C-NMR, lR, **HRMS** and/or combustion analysis.
- IO Stereochemical assignment of C-glycoside anomers, 7α and 7β, is based on 400 MHz ¹H-NMR spectro scopy of the pentaacetate derivatives 14 α and 14 β . Conversions $(7\alpha \rightarrow 14\alpha$ and $7\beta \rightarrow 14\beta)$ were done by the three steps. respectively: 1) NaH, $Me₂SO₄$ */* THF, 0 °C to room temp., 2 h (77% and 72%, respectively); 2) H₂, 10% Pd-C */ MeOH-THF*, 1 h; 3) Ac₂O, DMAP / pyridine, 10 min $(89\%$ for both anomers, 2 steps). Note that 14α adopts a flipped conformation as shown below.

- II **(a)** Matsumoto, T.; Katsuki. M.; Suzuki, K. *Tetrahedron tiff. 1988.29.6935-6938.* **(b)** Matsumoto, T.: **Hosoya,** T.: Suzuki, K. *Ibid.* 1990.31.4629-4632. (c) Mattsumoto. T.: Hosoya, T.; Suzuki, K. Synfetr 1991, 709-711. (d) Matsumoto, T.; Katsuki, M.; Jona, H.; Suzuki, K. J. Am. Chem. Soc. 1991, 113, 69826992. (e) Matsurnoto, T.; Hosoya, T.: Suzuki, K. *Ibid. 1992, l/4(. 3568-3570.*
- 12 Matsumoto, T.; Katsuki, M.; Suzuki, K. *Tetrahedron Lett.* 1**989**, *30*, 833–8
- 13 (a) Mukaiyama, T.; Murai, Y.; Shoda, S. *Chem. Lett.* **1981**, 431–432. (b) Hashimoto, S.; Hayashi, M.; Noyori, R. *Tetrahedron Lett.* 1984, 25. 1379-1382. (c) Nicolaou, K. C.; Chucholowski, A.; Dolle, R. E.: Randall, J. L. J. Chem. Soc., Chem. Commun. 1984, 1155-1156.
- 14 Yamaguchi, M.; Horiguchi, A.; Fukuda, A.; Minami, T. J. Ckm SW., *Perkin Ttvns, 1* 1990, 1079-1082.
- 1s For use of 9, see Nicolaou, K. C.; **Bockovich, N. J.;** Carcanague, D. R.; **Hummel.** C. W.; Even. F. F.J. *Am. C/tern. Sfw.* **1992. 1 IJ, 8701-8702.**
- 16 Dhaon, M. K.; Olsen, R. K.: Ramasamy, K. *J. Org. Chem.* 1982.47, 1962-l 965.
- 17 Personal communication from Dr. Morishima.

(Received in *Jcy~n* 23 *March 1994)*